Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer.
نویسندگان
چکیده
The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks, forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O(6)-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA-directed assembly of homo- and heterodimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template-directed assembly of PNA-modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels, which may find use in the study of assembly processes in cells.
منابع مشابه
A multiplex fluorophore molecular beacon: detection of the target sequence using large Stokes shift and multiple emission signal properties.
We have developed a multiplex fluorophore molecular beacon () with fluorophores located at its end to produce unique FRET (Fluorescence Resonance Energy Transfer). It exhibited diverse fluorescence properties depending on the mixing pattern, such as large Stokes shift emission and multiple colors, namely, blue, green and red using one excitation wavelength. Our also worked in probing a target p...
متن کاملA Review of Peptide Nucleic Acid
Abbreviations: DNA: Deoxyribonucleic Acid; RNA: Ribonucleic Acid; PNA: Peptide Nucleic Acid; WC: Watson-Crick; HG: Hoongsteen; NMM: N-Methyl Morpholine; DSC: Differential Scanning Calorimetry; RP-HPLC: Reverse Phase High Performance Liquid Chromatography; DsRed: Red Fluorescent Protein; SNPs: Single Nucleotide Polymorphisms; ACE: Affinity Capillary Electrophoresis; PNA-FISH: PNA Fluorescence In...
متن کاملTethered fluorophore motion: studying large DNA conformational changes by single-fluorophore imaging.
We have previously introduced tethered fluorophore motion (TFM), a single-molecule fluorescence technique that monitors the effective length of a biopolymer such as DNA. TFM uses the same principles as tethered particle motion (TPM) but employs a single fluorophore in place of the bead, allowing TFM to be combined with existing fluorescence techniques on a standard fluorescence microscope. TFM ...
متن کاملA molecular beacon DNA microarray system for rapid detection of E. coli O157:H7 that eliminates the risk of a false negative signal.
A DNA hybridization based optical detection platform for the detection of foodborne pathogens has been developed with virtually zero probability of the false negative signal. This portable, low-cost and real-time assaying detection platform utilizes the color changing molecular beacon as a probe for the optical detection of the target sequence. The computer-controlled detection platform exploit...
متن کاملα-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels
Orai1 forms a highly calcium-selective pore of the calcium release activated channel, and α-SNAP is necessary for its function. Here we show that α-SNAP regulates on-site assembly of Orai1 dimers into calcium-selective multimers. We find that Orai1 is a dimer in resting primary mouse embryonic fibroblasts but displays variable stoichiometry in the plasma membrane of store-depleted cells. Remark...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioconjugate chemistry
دوره 25 10 شماره
صفحات -
تاریخ انتشار 2014